Home
All about Cutting Planes
Proof Systems
- Cutting Planes stronger than
Resolution
- Source: CP → uCP → Res
- Source: CP → uCP → PHP → PC_Q → Res
- Cutting Planes stronger than
Truth table
- Source: CP → tlCP → tlRes → ttp
- Source: CP → uCP → PHP → tlResLin_F2 → tlRes → ttp
- Cutting Planes stronger than
Tree-like resolution
- Source: CP → tlCP → tlRes
- Source: CP → uCP → PHP → tlResLin_F2 → tlRes
- Cutting Planes stronger than
Regular resolution
- Source: CP → uCP → Res → regRes
- Source: CP → uCP → PHP → PC_Q → Res → regRes
- Cutting Planes stronger than
Ordered resolution
- Source: CP → uCP → Res → regRes → ordRes
- Source: CP → uCP → Res → regRes → pearl → ordRes
- Cutting Planes stronger than
Pool resolution
- Source: CP → uCP → Res → poolRes
- Source: CP → uCP → PHP → PC_Q → Res → poolRes
- Cutting Planes stronger than
Linear resolution
- Source: CP → uCP → Res → linRes
- Source: CP → uCP → PHP → PC_Q → Res → linRes
- Cutting Planes stronger than
Reversible resolution
- Source: CP → uCP → Res → revRes
- Source: CP → uCP → PHP → PC_Q → Res → revRes
- Cutting Planes stronger than
Tree-like Cutting Planes
- Source: [subsystem]
- Source: CP → uCP → Res → regRes → ordRes → peb+ind → tlCP
- Cutting Planes simulates
Cutting Planes with Unary Coefficients
- Cutting Planes weaker than
Semantic Cutting Planes
- Source: [subsystem]
- Source: semanticCP → CliqueColouringeq → CP
- Cutting Planes stronger than
Cutting Planes with Saturation
- Source: CP → uCP → Res → saturationCP
- Source: CP → uCP → PHP → PC_Q → Res → saturationCP
- Cutting Planes simulated by
Stabbing Planes
- Cutting Planes simulates
Stabbing Planes with Unary Coefficients
- Cutting Planes weaker than
Res(CP)
- Source: [subsystem]
- Source: Res(CP) → Res(LP) → uRes(LP) → Res-k → CliqueColouringmlogm → CP
- Cutting Planes does not simulate
Res(LP)
- Source: Res(LP) → uRes(LP) → Res-k → CliqueColouringmlogm → CP
- Cutting Planes does not simulate
Res(CP) with unary coefficients
- Source: uRes(CP) → uRes(LP) → Res-k → CliqueColouringmlogm → CP
- Cutting Planes does not simulate
Res(LP) with unary coefficients
- Source: uRes(LP) → Res-k → CliqueColouringmlogm → CP
- Cutting Planes does not simulate
Res(L\(\&\)P)
- Source: Res(L&P) → Res(LP) → uRes(LP) → Res-k → CliqueColouringmlogm → CP
- Cutting Planes does not simulate
Res(L\(\&\)P) with unary coefficients
- Source: uRes(L&P) → uRes(LP) → Res-k → CliqueColouringmlogm → CP
- Cutting Planes [missing?]
Semantic degree-k threshold system, treelike version
- Cutting Planes incomparable wrt
Polynomial Calculus over \(\mathbb{F}_2\)
- Source: CP → uCP → PHP → PC_F2
- Source: PC_F2 → NS_F2 → ts+ind → CP
- Cutting Planes incomparable wrt
Nullstellensatz over \(\mathbb{F}_2\)
- Source: CP → uCP → PHP → PC_F2 → NS_F2
- Source: NS_F2 → ts+ind → CP
- Cutting Planes does not simulate
ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Source: ResLin_Z → uResLin_Z → uRes(CP) → uRes(LP) → Res-k → CliqueColouringmlogm → CP
- Cutting Planes does not simulate
unary ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Source: uResLin_Z → uRes(CP) → uRes(LP) → Res-k → CliqueColouringmlogm → CP
- Cutting Planes [missing?]
ResLin over \(\mathbb{F}_2\), Res(\(\oplus\))
- Cutting Planes not simulated by
Tree-like ResLin over \(\mathbb{F}_2\), treelike Res(\(\oplus\))
- Source: CP → uCP → PHP → tlResLin_F2
- Cutting Planes incomparable wrt
Polynomial Calculus over \(\mathbb{Q}\)
- Source: CP → uCP → PHP → PC_Q
- Source: PC_Q → NS_Q → tsQ+ind → CP
- Cutting Planes incomparable wrt
Nullstellensatz over \(\mathbb{Q}\)
- Source: CP → uCP → PHP → PC_Q → NS_Q
- Source: NS_Q → tsQ+ind → CP
- Cutting Planes stronger than
Hitting
- Source: CP → tlCP → tlRes → hit
- Source: CP → uCP → PHP → tlResLin_F2 → tlRes → hit
- Cutting Planes [missing?]
Lift and Project
- Cutting Planes simulates
Lift and Project with unary coefficients
- Cutting Planes does not simulate
Positivstellensatz Calculus
- Source: PSC → PS → SoS → sLSn+ → CliqueColouring → CP
- Cutting Planes does not simulate
Positivstellensatz
- Source: PS → SoS → sLSn+ → CliqueColouring → CP
- Cutting Planes [missing?]
Lovász--Schrijver (LS)
- Cutting Planes [missing?]
Lovász--Schrijver with squares (LS\(_+\))
- Cutting Planes does not simulate
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree
- Source: LSd+ → CliqueColouring → CP
- Cutting Planes does not simulate
Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree
- Source: LSn+ → LSd+ → CliqueColouring → CP
- Cutting Planes weaker than
Cone Proof System
- Source: CPS → IPS → extFrege → Frege → CP
- Source: CPS → LSn+ → LSd+ → CliqueColouring → CP
- Cutting Planes not simulated by
tl Lovász--Schrijver (LS)
- Source: CP → tseitin → sLS+ → tlLS+ → tlLS
- Cutting Planes not simulated by
Lovász--Schrijver with squares (LS\(_+\))
- Source: CP → tseitin → sLS+ → tlLS+
- Cutting Planes [missing?]
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree, treelike
- Cutting Planes not simulated by
static Lovász--Schrijver (static LS)
- Source: CP → tseitin → sLS+ → sLS
- Cutting Planes not simulated by
static Lovász--Schrijver, with squares of linear functions (static LS\(_+\))
- Source: CP → tseitin → sLS+
- Cutting Planes incomparable wrt
static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\))
- Source: CP → tseitin → SoS → sLSn+
- Source: sLSn+ → CliqueColouring → CP
- Cutting Planes incomparable wrt
Sum of Squares (Lasserre)
- Source: CP → tseitin → SoS
- Source: SoS → sLSn+ → CliqueColouring → CP
- Cutting Planes incomparable wrt
Sherali--Adams
- Source: CP → tseitin → SoS → SA
- Source: SA → NS_Q → tsQ+ind → CP
- Cutting Planes incomparable wrt
Circular resolution
- Source: CP → tseitin → SoS → SA → circRes
- Source: circRes → SA → NS_Q → tsQ+ind → CP
- Cutting Planes not simulated by
Unary Sherali--Adams
- Source: CP → uCP → Res → sod+xor → uSA
- Cutting Planes weaker than
Ideal Proof System
- Source: IPS → extFrege → Frege → CP
- Source: IPS → extFrege → Frege → AC0Frege → CliqueColouring2mm → CP
- Cutting Planes weaker than
Extended Frege
- Source: extFrege → Frege → CP
- Source: extFrege → Frege → AC0Frege → CliqueColouring2mm → CP
- Cutting Planes weaker than
Extended resolution
- Source: extRes → extFrege → Frege → CP
- Source: extRes → extFrege → Frege → AC0Frege → CliqueColouring2mm → CP
- Cutting Planes weaker than
Frege
- Cutting Planes incomparable wrt
\(\mathrm{AC}^0\)-Frege
- Source: CP → uCP → PHP → fPHP → ofPHP → AC0Frege
- Source: AC0Frege → CliqueColouring2mm → CP
- Cutting Planes incomparable wrt
k-DNF Resolution
- Source: CP → uCP → PHP → fPHP → ofPHP → AC0Frege → Res-k
- Source: Res-k → CliqueColouringmlogm → CP
- Cutting Planes weaker than
\(\mathrm{TC}^0\)-Frege
- Source: TC0Frege → Res(CP) → CP
- Source: TC0Frege → AC0Frege → CliqueColouring2mm → CP
- Cutting Planes does not simulate
\(\mathrm{AC}^0\)-Frege with mod 2 axioms
- Source: AC0Frege+Mod2axioms → AC0Frege → CliqueColouring2mm → CP
- Cutting Planes does not simulate
\(\mathrm{AC}^0\)-Frege with mod 2 gates
- Source: AC0(+)Frege → AC0Frege → CliqueColouring2mm → CP
- Cutting Planes does not simulate
OBDD(join,weakening)
- Source: OBDDjoinweak → CliqueColouring → CP
- Cutting Planes weaker than
LK
- Source: LK → Frege → CP
- Source: LK → Frege → AC0Frege → CliqueColouring2mm → CP
- Cutting Planes weaker than
Zermelo-Fraenkl Set Theory with the Axiom of Choice
- Source: ZFC → Res(CP) → CP
- Source: ZFC → extFrege → Frege → AC0Frege → CliqueColouring2mm → CP
Formulas
This database is still incomplete; missing data may indicate either the information was not yet recorded or an open problem. Users are encouraged to contribute missing proof systems and/or relations at https://gitlab.com/proofcomplexityzoo/zoo.
Licensed under CC BY 4.0
