Home
All about \(\mathrm{TC}^0\)-Frege
Proof Systems
- \(\mathrm{TC}^0\)-Frege stronger than
Resolution
- Source: TC0Frege → AC0Frege → Res-k → Res
- Source: TC0Frege → PHP → PC_F2 → Res
- \(\mathrm{TC}^0\)-Frege stronger than
Truth table
- Source: TC0Frege → Res(CP) → CP → tlCP → tlRes → ttp
- Source: TC0Frege → PHP → tlResLin_F2 → tlRes → ttp
- \(\mathrm{TC}^0\)-Frege stronger than
Tree-like resolution
- Source: TC0Frege → Res(CP) → CP → tlCP → tlRes
- Source: TC0Frege → PHP → tlResLin_F2 → tlRes
- \(\mathrm{TC}^0\)-Frege stronger than
Regular resolution
- Source: TC0Frege → AC0Frege → Res-k → Res → regRes
- Source: TC0Frege → PHP → PC_F2 → Res → regRes
- \(\mathrm{TC}^0\)-Frege stronger than
Ordered resolution
- Source: TC0Frege → AC0Frege → Res-k → Res → regRes → ordRes
- Source: TC0Frege → PHP → PC_F2 → Res → regRes → ordRes
- \(\mathrm{TC}^0\)-Frege stronger than
Pool resolution
- Source: TC0Frege → AC0Frege → Res-k → Res → poolRes
- Source: TC0Frege → PHP → PC_F2 → Res → poolRes
- \(\mathrm{TC}^0\)-Frege stronger than
Linear resolution
- Source: TC0Frege → AC0Frege → Res-k → Res → linRes
- Source: TC0Frege → PHP → PC_F2 → Res → linRes
- \(\mathrm{TC}^0\)-Frege stronger than
Reversible resolution
- Source: TC0Frege → AC0Frege → Res-k → Res → revRes
- Source: TC0Frege → PHP → PC_F2 → Res → revRes
- \(\mathrm{TC}^0\)-Frege stronger than
Cutting Planes
- Source: TC0Frege → Res(CP) → CP
- Source: TC0Frege → AC0Frege → CliqueColouring2mm → CP
- \(\mathrm{TC}^0\)-Frege stronger than
Tree-like Cutting Planes
- Source: TC0Frege → Res(CP) → CP → tlCP
- Source: TC0Frege → AC0Frege → Res-k → Res → regRes → ordRes → peb+ind → tlCP
- \(\mathrm{TC}^0\)-Frege stronger than
Cutting Planes with Unary Coefficients
- Source: TC0Frege → Res(CP) → CP → uCP
- Source: TC0Frege → AC0Frege → CliqueColouring2mm → CP → uCP
- \(\mathrm{TC}^0\)-Frege [missing?]
Semantic Cutting Planes
- \(\mathrm{TC}^0\)-Frege stronger than
Cutting Planes with Saturation
- Source: TC0Frege → AC0Frege → Res-k → Res → saturationCP
- Source: TC0Frege → PHP → PC_F2 → Res → saturationCP
- \(\mathrm{TC}^0\)-Frege simulates
Stabbing Planes
- Source: TC0Frege → Res(CP) → SP
- \(\mathrm{TC}^0\)-Frege stronger than
Stabbing Planes with Unary Coefficients
- Source: TC0Frege → Res(CP) → uRes(CP) → uSP
- Source: TC0Frege → AC0Frege → CliqueColouring2mm → CP → uSP
- \(\mathrm{TC}^0\)-Frege simulates
Res(CP)
- \(\mathrm{TC}^0\)-Frege simulates
Res(LP)
- Source: TC0Frege → Res(CP) → Res(LP)
- \(\mathrm{TC}^0\)-Frege simulates
Res(CP) with unary coefficients
- Source: TC0Frege → Res(CP) → uRes(CP)
- \(\mathrm{TC}^0\)-Frege simulates
Res(LP) with unary coefficients
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP)
- \(\mathrm{TC}^0\)-Frege simulates
Res(L\(\&\)P)
- Source: TC0Frege → Res(CP) → Res(LP) → Res(L&P)
- \(\mathrm{TC}^0\)-Frege simulates
Res(L\(\&\)P) with unary coefficients
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → uRes(L&P)
- \(\mathrm{TC}^0\)-Frege [missing?]
Semantic degree-k threshold system, treelike version
- \(\mathrm{TC}^0\)-Frege stronger than
Polynomial Calculus over \(\mathbb{F}_2\)
- Source: TC0Frege → AC0(+)Frege → PC_F2
- Source: TC0Frege → PHP → PC_F2
- \(\mathrm{TC}^0\)-Frege stronger than
Nullstellensatz over \(\mathbb{F}_2\)
- Source: TC0Frege → AC0(+)Frege → AC0Frege+Mod2axioms → NS_F2
- Source: TC0Frege → PHP → PC_F2 → NS_F2
- \(\mathrm{TC}^0\)-Frege [missing?]
ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- \(\mathrm{TC}^0\)-Frege [missing?]
unary ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- \(\mathrm{TC}^0\)-Frege simulates
ResLin over \(\mathbb{F}_2\), Res(\(\oplus\))
- Source: TC0Frege → AC0(+)Frege → ResLin_F2
- \(\mathrm{TC}^0\)-Frege stronger than
Tree-like ResLin over \(\mathbb{F}_2\), treelike Res(\(\oplus\))
- Source: TC0Frege → AC0(+)Frege → ResLin_F2 → tlResLin_F2
- Source: TC0Frege → PHP → tlResLin_F2
- \(\mathrm{TC}^0\)-Frege not simulated by
Polynomial Calculus over \(\mathbb{Q}\)
- Source: TC0Frege → PHP → PC_Q
- \(\mathrm{TC}^0\)-Frege not simulated by
Nullstellensatz over \(\mathbb{Q}\)
- Source: TC0Frege → PHP → PC_Q → NS_Q
- \(\mathrm{TC}^0\)-Frege stronger than
Hitting
- Source: TC0Frege → Res(CP) → CP → tlCP → tlRes → hit
- Source: TC0Frege → PHP → tlResLin_F2 → tlRes → hit
- \(\mathrm{TC}^0\)-Frege simulates
Lift and Project
- Source: TC0Frege → Res(CP) → Res(LP) → Res(L&P) → L&P
- \(\mathrm{TC}^0\)-Frege stronger than
Lift and Project with unary coefficients
- Source: TC0Frege → Res(CP) → CP → uCP → uL&P
- Source: TC0Frege → AC0Frege → CliqueColouring2mm → CP → uCP → uL&P
- \(\mathrm{TC}^0\)-Frege [missing?]
Positivstellensatz Calculus
- \(\mathrm{TC}^0\)-Frege [missing?]
Positivstellensatz
- \(\mathrm{TC}^0\)-Frege [missing?]
Lovász--Schrijver (LS)
- \(\mathrm{TC}^0\)-Frege [missing?]
Lovász--Schrijver with squares (LS\(_+\))
- \(\mathrm{TC}^0\)-Frege [missing?]
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree
- \(\mathrm{TC}^0\)-Frege [missing?]
Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree
- \(\mathrm{TC}^0\)-Frege simulated by
Cone Proof System
- Source: CPS → IPS → extFrege → Frege → TC0Frege
- \(\mathrm{TC}^0\)-Frege not simulated by
tl Lovász--Schrijver (LS)
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → tseitin → sLS+ → tlLS+ → tlLS
- \(\mathrm{TC}^0\)-Frege not simulated by
Lovász--Schrijver with squares (LS\(_+\))
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → tseitin → sLS+ → tlLS+
- \(\mathrm{TC}^0\)-Frege [missing?]
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree, treelike
- \(\mathrm{TC}^0\)-Frege not simulated by
static Lovász--Schrijver (static LS)
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → tseitin → sLS+ → sLS
- \(\mathrm{TC}^0\)-Frege not simulated by
static Lovász--Schrijver, with squares of linear functions (static LS\(_+\))
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → tseitin → sLS+
- \(\mathrm{TC}^0\)-Frege not simulated by
static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\))
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → tseitin → SoS → sLSn+
- \(\mathrm{TC}^0\)-Frege not simulated by
Sum of Squares (Lasserre)
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → tseitin → SoS
- \(\mathrm{TC}^0\)-Frege not simulated by
Sherali--Adams
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → tseitin → SoS → SA
- \(\mathrm{TC}^0\)-Frege not simulated by
Circular resolution
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → tseitin → SoS → SA → circRes
- \(\mathrm{TC}^0\)-Frege not simulated by
Unary Sherali--Adams
- Source: TC0Frege → AC0Frege → Res-k → Res → sod+xor → uSA
- \(\mathrm{TC}^0\)-Frege simulated by
Ideal Proof System
- Source: IPS → extFrege → Frege → TC0Frege
- \(\mathrm{TC}^0\)-Frege simulated by
Extended Frege
- Source: extFrege → Frege → TC0Frege
- \(\mathrm{TC}^0\)-Frege simulated by
Extended resolution
- Source: extRes → extFrege → Frege → TC0Frege
- \(\mathrm{TC}^0\)-Frege simulated by
Frege
- Source: [citation needed]
- \(\mathrm{TC}^0\)-Frege stronger than
\(\mathrm{AC}^0\)-Frege
- Source: [subsystem]
- Source: TC0Frege → PHP → fPHP → ofPHP → AC0Frege
- \(\mathrm{TC}^0\)-Frege stronger than
k-DNF Resolution
- Source: TC0Frege → AC0Frege → Res-k
- Source: TC0Frege → PHP → fPHP → ofPHP → AC0Frege → Res-k
- \(\mathrm{TC}^0\)-Frege simulates
\(\mathrm{AC}^0\)-Frege with mod 2 axioms
- Source: TC0Frege → AC0(+)Frege → AC0Frege+Mod2axioms
- \(\mathrm{TC}^0\)-Frege simulates
\(\mathrm{AC}^0\)-Frege with mod 2 gates
- \(\mathrm{TC}^0\)-Frege [missing?]
OBDD(join,weakening)
- \(\mathrm{TC}^0\)-Frege simulated by
LK
- Source: LK → Frege → TC0Frege
- \(\mathrm{TC}^0\)-Frege simulated by
Zermelo-Fraenkl Set Theory with the Axiom of Choice
- Source: ZFC → extFrege → Frege → TC0Frege
Formulas
This database is still incomplete; missing data may indicate either the information was not yet recorded or an open problem. Users are encouraged to contribute missing proof systems and/or relations at https://gitlab.com/proofcomplexityzoo/zoo.
Licensed under CC BY 4.0
