Home
All about static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\))
Notes: unbounded degree, with arbitrary squares
Proof Systems
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Resolution
- Source: sLSn+ → CliqueColouring → Res
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) stronger than
Truth table
- Source: sLSn+ → sLS+ → tlLS+ → tlLS → tlRes → ttp
- Source: sLSn+ → sLS+ → PHP → tlResLin_F2 → tlRes → ttp
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) stronger than
Tree-like resolution
- Source: sLSn+ → sLS+ → tlLS+ → tlLS → tlRes
- Source: sLSn+ → sLS+ → PHP → tlResLin_F2 → tlRes
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Regular resolution
- Source: sLSn+ → CliqueColouring → Res → regRes
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Ordered resolution
- Source: sLSn+ → CliqueColouring → Res → regRes → ordRes
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Pool resolution
- Source: sLSn+ → CliqueColouring → Res → poolRes
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Linear resolution
- Source: sLSn+ → CliqueColouring → Res → linRes
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Reversible resolution
- Source: sLSn+ → CliqueColouring → Res → revRes
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) incomparable wrt
Cutting Planes
- Source: sLSn+ → CliqueColouring → CP
- Source: CP → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Tree-like Cutting Planes
- Source: sLSn+ → CliqueColouring → CP → tlCP
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Cutting Planes with Unary Coefficients
- Source: sLSn+ → CliqueColouring → CP → uCP
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) incomparable wrt
Semantic Cutting Planes
- Source: sLSn+ → CliqueColouring → semanticCP
- Source: semanticCP → CP → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Cutting Planes with Saturation
- Source: sLSn+ → CliqueColouring → Res → saturationCP
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) incomparable wrt
Stabbing Planes
- Source: sLSn+ → CliqueColouring → SP
- Source: SP → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Stabbing Planes with Unary Coefficients
- Source: sLSn+ → CliqueColouring → SP → uSP
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Res(CP)
- Source: Res(CP) → Res(LP) → uRes(LP) → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Res(LP)
- Source: Res(LP) → uRes(LP) → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Res(CP) with unary coefficients
- Source: uRes(CP) → uRes(LP) → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Res(LP) with unary coefficients
- Source: uRes(LP) → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Res(L\(\&\)P)
- Source: Res(L&P) → Res(LP) → uRes(LP) → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Res(L\(\&\)P) with unary coefficients
- Source: uRes(L&P) → uRes(LP) → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) [missing?]
Semantic degree-k threshold system, treelike version
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) incomparable wrt
Polynomial Calculus over \(\mathbb{F}_2\)
- Source: sLSn+ → sLS+ → PHP → PC_F2
- Source: PC_F2 → NS_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) incomparable wrt
Nullstellensatz over \(\mathbb{F}_2\)
- Source: sLSn+ → sLS+ → PHP → PC_F2 → NS_F2
- Source: NS_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Source: ResLin_Z → uResLin_Z → ResLin_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
unary ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Source: uResLin_Z → ResLin_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
ResLin over \(\mathbb{F}_2\), Res(\(\oplus\))
- Source: ResLin_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Tree-like ResLin over \(\mathbb{F}_2\), treelike Res(\(\oplus\))
- Source: sLSn+ → sLS+ → PHP → tlResLin_F2
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Polynomial Calculus over \(\mathbb{Q}\)
- Source: sLSn+ → sLS+ → PHP → PC_Q
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Nullstellensatz over \(\mathbb{Q}\)
- Source: sLSn+ → sLS+ → PHP → PC_Q → NS_Q
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) stronger than
Hitting
- Source: sLSn+ → sLS+ → tlLS+ → tlLS → tlRes → hit
- Source: sLSn+ → sLS+ → PHP → tlResLin_F2 → tlRes → hit
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Lift and Project
- Source: sLSn+ → CliqueColouring → L&P
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
Lift and Project with unary coefficients
- Source: sLSn+ → CliqueColouring → L&P → uL&P
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) simulated by
Positivstellensatz Calculus
- Source: PSC → PS → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) simulated by
Positivstellensatz
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) [missing?]
Lovász--Schrijver (LS)
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) [missing?]
Lovász--Schrijver with squares (LS\(_+\))
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree
- Source: LSd+ → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) weaker than
Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree
- Source: [subsystem]
- Source: LSn+ → LSd+ → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) weaker than
Cone Proof System
- Source: CPS → LSn+ → sLSn+
- Source: CPS → LSn+ → LSd+ → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) simulates
tl Lovász--Schrijver (LS)
- Source: sLSn+ → sLS+ → tlLS+ → tlLS
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) simulates
Lovász--Schrijver with squares (LS\(_+\))
- Source: sLSn+ → sLS+ → tlLS+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) [missing?]
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree, treelike
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) simulates
static Lovász--Schrijver (static LS)
- Source: sLSn+ → sLS+ → sLS
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) simulates
static Lovász--Schrijver, with squares of linear functions (static LS\(_+\))
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) simulated by
Sum of Squares (Lasserre)
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) [missing?]
Sherali--Adams
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) [missing?]
Circular resolution
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) [missing?]
Unary Sherali--Adams
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Ideal Proof System
- Source: IPS → extFrege → Frege → AC0(+)Frege → ResLin_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Extended Frege
- Source: extFrege → Frege → AC0(+)Frege → ResLin_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Extended resolution
- Source: extRes → extFrege → Frege → AC0(+)Frege → ResLin_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Frege
- Source: Frege → AC0(+)Frege → ResLin_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
\(\mathrm{AC}^0\)-Frege
- Source: sLSn+ → sLS+ → PHP → fPHP → ofPHP → AC0Frege
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) not simulated by
k-DNF Resolution
- Source: sLSn+ → sLS+ → PHP → fPHP → ofPHP → AC0Frege → Res-k
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
\(\mathrm{TC}^0\)-Frege
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
\(\mathrm{AC}^0\)-Frege with mod 2 axioms
- Source: AC0Frege+Mod2axioms → NS_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
\(\mathrm{AC}^0\)-Frege with mod 2 gates
- Source: AC0(+)Frege → ResLin_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
OBDD(join,weakening)
- Source: OBDDjoinweak → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
LK
- Source: LK → Frege → AC0(+)Frege → ResLin_F2 → tseitin → SoS → sLSn+
- static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) does not simulate
Zermelo-Fraenkl Set Theory with the Axiom of Choice
- Source: ZFC → Res(CP) → Res(LP) → uRes(LP) → tseitin → SoS → sLSn+
Formulas
- The size complexity of
Pigeonhole principle
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is polynomial
- Source: sLSn+ → sLS+ → PHP
- The size complexity of
Pigeonhole principle with functionality axioms
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is polynomial
- Source: sLSn+ → sLS+ → PHP → fPHP
- The size complexity of
Pigeonhole principle with functionality and onto axioms
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is polynomial
- Source: sLSn+ → sLS+ → PHP → fPHP → ofPHP
- The size complexity of
Weak pigeonhole principle (2n pigeons, n holes)
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is polynomial
- Source: sLSn+ → sLS+ → PHP → PHP2nn
- The size complexity of
Weak pigeonhole principle (\(n^2\) pigeons, n holes)
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is polynomial
- Source: sLSn+ → sLS+ → PHP → PHP2nn → PHPn2n
- The size complexity of
Bitwise pigeonhole principle
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Relativized pigeonhole principle (n,\(n^2\),n-1)
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Ordering principle
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Guarded ordering principle
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Tseitin over \(\mathbb{F}_2\)
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is exponential
- Source: tseitin → SoS → sLSn+
- The size complexity of
Tseitin over \(\mathbb{F}_2\) with k-ary AND gadget
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Tseitin over \(\mathbb{Q}\)
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Flow
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Tseitin \(\mathbb{F}_2\) \(\circ\) IND
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Tseitin \(\mathbb{Q}\) \(\circ\) IND
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Random CNF
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Clique-Colouring
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is polynomial
- Source: [citation needed]
- The size complexity of
Clique-Colouring encoded as equalities
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Weak Clique-Colouring (2m clique, m colours)
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is polynomial
- Source: sLSn+ → CliqueColouring → CliqueColouring2mm
- The size complexity of
Weak Clique-Colouring (m^1/2 clique, log^2 m colours)
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is polynomial
- Source: sLSn+ → CliqueColouring → CliqueColouringmlogm
- The size complexity of
Clique-Colouring composed with a permutation
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Pebbling \(\circ\) IND
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Pebbling \(\circ\) XOR, then guarded
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
Stone formula
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
- The size complexity of
String of pearls
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is at most quasipolynomial
- Source: sLSn+ → sLS+ → tlLS+ → tlLS → tlRes → pearl
- The size complexity of
Sink of DAG \(\circ\) XOR
in static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\)) is [missing?]
This database is still incomplete; missing data may indicate either the information was not yet recorded or an open problem. Users are encouraged to contribute missing proof systems and/or relations at https://gitlab.com/proofcomplexityzoo/zoo.
Licensed under CC BY 4.0
