Home
All about Res(L\(\&\)P) with unary coefficients
Notes: aka R(Lift-and-project) with unary coefficients
Proof Systems
- Res(L\(\&\)P) with unary coefficients stronger than
Resolution
- Source: uRes(L&P) → uRes(LP) → Res
- Source: uRes(L&P) → uRes(LP) → tseitin → Res
- Res(L\(\&\)P) with unary coefficients stronger than
Truth table
- Source: uRes(L&P) → uRes(LP) → Res → regRes → tlRes → ttp
- Source: uRes(L&P) → uRes(LP) → Res → regRes → ordering → tlRes → ttp
- Res(L\(\&\)P) with unary coefficients stronger than
Tree-like resolution
- Source: uRes(L&P) → uRes(LP) → Res → regRes → tlRes
- Source: uRes(L&P) → uRes(LP) → Res → regRes → ordering → tlRes
- Res(L\(\&\)P) with unary coefficients stronger than
Regular resolution
- Source: uRes(L&P) → uRes(LP) → Res → regRes
- Source: uRes(L&P) → uRes(LP) → tseitin → Res → regRes
- Res(L\(\&\)P) with unary coefficients stronger than
Ordered resolution
- Source: uRes(L&P) → uRes(LP) → Res → regRes → ordRes
- Source: uRes(L&P) → uRes(LP) → Res → regRes → pearl → ordRes
- Res(L\(\&\)P) with unary coefficients stronger than
Pool resolution
- Source: uRes(L&P) → uRes(LP) → Res → poolRes
- Source: uRes(L&P) → uRes(LP) → tseitin → Res → poolRes
- Res(L\(\&\)P) with unary coefficients stronger than
Linear resolution
- Source: uRes(L&P) → uRes(LP) → Res → linRes
- Source: uRes(L&P) → uRes(LP) → tseitin → Res → linRes
- Res(L\(\&\)P) with unary coefficients stronger than
Reversible resolution
- Source: uRes(L&P) → uRes(LP) → Res → revRes
- Source: uRes(L&P) → uRes(LP) → tseitin → Res → revRes
- Res(L\(\&\)P) with unary coefficients not simulated by
Cutting Planes
- Source: uRes(L&P) → uRes(LP) → Res-k → CliqueColouringmlogm → CP
- Res(L\(\&\)P) with unary coefficients not simulated by
Tree-like Cutting Planes
- Source: uRes(L&P) → uRes(LP) → Res → regRes → ordRes → peb+ind → tlCP
- Res(L\(\&\)P) with unary coefficients stronger than
Cutting Planes with Unary Coefficients
- Source: uRes(L&P) → uRes(LP) → uRes(CP) → uCP
- Source: uRes(L&P) → uRes(LP) → Res-k → CliqueColouringmlogm → CP → uCP
- Res(L\(\&\)P) with unary coefficients [missing?]
Semantic Cutting Planes
- Res(L\(\&\)P) with unary coefficients stronger than
Cutting Planes with Saturation
- Source: uRes(L&P) → uRes(LP) → Res → saturationCP
- Source: uRes(L&P) → uRes(LP) → tseitin → Res → saturationCP
- Res(L\(\&\)P) with unary coefficients [missing?]
Stabbing Planes
- Res(L\(\&\)P) with unary coefficients simulates
Stabbing Planes with Unary Coefficients
- Source: uRes(L&P) → uRes(LP) → uRes(CP) → uSP
- Source: uRes(L&P) → uRes(LP) → Res-k → CliqueColouringmlogm → CP → uSP
- Res(L\(\&\)P) with unary coefficients simulated by
Res(CP)
- Source: Res(CP) → Res(LP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients simulated by
Res(LP)
- Source: Res(LP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients equivalent
Res(CP) with unary coefficients
- Source: uRes(L&P) → uRes(LP) → uRes(CP)
- Res(L\(\&\)P) with unary coefficients equivalent
Res(LP) with unary coefficients
- Res(L\(\&\)P) with unary coefficients simulated by
Res(L\(\&\)P)
- Source: Res(L&P) → Res(LP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients [missing?]
Semantic degree-k threshold system, treelike version
- Res(L\(\&\)P) with unary coefficients not simulated by
Polynomial Calculus over \(\mathbb{F}_2\)
- Source: uRes(L&P) → uRes(LP) → uRes(CP) → uCP → PHP → PC_F2
- Res(L\(\&\)P) with unary coefficients not simulated by
Nullstellensatz over \(\mathbb{F}_2\)
- Source: uRes(L&P) → uRes(LP) → uRes(CP) → uCP → PHP → PC_F2 → NS_F2
- Res(L\(\&\)P) with unary coefficients simulated by
ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Source: ResLin_Z → uResLin_Z → uRes(CP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients simulated by
unary ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Source: uResLin_Z → uRes(CP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients [missing?]
ResLin over \(\mathbb{F}_2\), Res(\(\oplus\))
- Res(L\(\&\)P) with unary coefficients not simulated by
Tree-like ResLin over \(\mathbb{F}_2\), treelike Res(\(\oplus\))
- Source: uRes(L&P) → uRes(LP) → uRes(CP) → uCP → PHP → tlResLin_F2
- Res(L\(\&\)P) with unary coefficients not simulated by
Polynomial Calculus over \(\mathbb{Q}\)
- Source: uRes(L&P) → uRes(LP) → tseitin → PC_Q
- Res(L\(\&\)P) with unary coefficients not simulated by
Nullstellensatz over \(\mathbb{Q}\)
- Source: uRes(L&P) → uRes(LP) → tseitin → PC_Q → NS_Q
- Res(L\(\&\)P) with unary coefficients stronger than
Hitting
- Source: uRes(L&P) → uRes(LP) → Res → regRes → tlRes → hit
- Source: uRes(L&P) → uRes(LP) → Res → regRes → ordering → tlRes → hit
- Res(L\(\&\)P) with unary coefficients [missing?]
Lift and Project
- Res(L\(\&\)P) with unary coefficients stronger than
Lift and Project with unary coefficients
- Source: [subsystem]
- Source: uRes(L&P) → uRes(LP) → Res-k → CliqueColouringmlogm → CP → uCP → uL&P
- Res(L\(\&\)P) with unary coefficients [missing?]
Positivstellensatz Calculus
- Res(L\(\&\)P) with unary coefficients [missing?]
Positivstellensatz
- Res(L\(\&\)P) with unary coefficients [missing?]
Lovász--Schrijver (LS)
- Res(L\(\&\)P) with unary coefficients [missing?]
Lovász--Schrijver with squares (LS\(_+\))
- Res(L\(\&\)P) with unary coefficients [missing?]
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree
- Res(L\(\&\)P) with unary coefficients [missing?]
Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree
- Res(L\(\&\)P) with unary coefficients simulated by
Cone Proof System
- Source: CPS → IPS → extFrege → Frege → TC0Frege → Res(CP) → Res(LP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients not simulated by
tl Lovász--Schrijver (LS)
- Source: uRes(L&P) → uRes(LP) → tseitin → sLS+ → tlLS+ → tlLS
- Res(L\(\&\)P) with unary coefficients not simulated by
Lovász--Schrijver with squares (LS\(_+\))
- Source: uRes(L&P) → uRes(LP) → tseitin → sLS+ → tlLS+
- Res(L\(\&\)P) with unary coefficients [missing?]
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree, treelike
- Res(L\(\&\)P) with unary coefficients not simulated by
static Lovász--Schrijver (static LS)
- Source: uRes(L&P) → uRes(LP) → tseitin → sLS+ → sLS
- Res(L\(\&\)P) with unary coefficients not simulated by
static Lovász--Schrijver, with squares of linear functions (static LS\(_+\))
- Source: uRes(L&P) → uRes(LP) → tseitin → sLS+
- Res(L\(\&\)P) with unary coefficients not simulated by
static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\))
- Source: uRes(L&P) → uRes(LP) → tseitin → SoS → sLSn+
- Res(L\(\&\)P) with unary coefficients not simulated by
Sum of Squares (Lasserre)
- Source: uRes(L&P) → uRes(LP) → tseitin → SoS
- Res(L\(\&\)P) with unary coefficients not simulated by
Sherali--Adams
- Source: uRes(L&P) → uRes(LP) → tseitin → SoS → SA
- Res(L\(\&\)P) with unary coefficients not simulated by
Circular resolution
- Source: uRes(L&P) → uRes(LP) → tseitin → SoS → SA → circRes
- Res(L\(\&\)P) with unary coefficients not simulated by
Unary Sherali--Adams
- Source: uRes(L&P) → uRes(LP) → Res → sod+xor → uSA
- Res(L\(\&\)P) with unary coefficients simulated by
Ideal Proof System
- Source: IPS → extFrege → Frege → TC0Frege → Res(CP) → Res(LP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients simulated by
Extended Frege
- Source: extFrege → Frege → TC0Frege → Res(CP) → Res(LP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients simulated by
Extended resolution
- Source: extRes → extFrege → Frege → TC0Frege → Res(CP) → Res(LP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients simulated by
Frege
- Source: Frege → TC0Frege → Res(CP) → Res(LP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients not simulated by
\(\mathrm{AC}^0\)-Frege
- Source: uRes(L&P) → uRes(LP) → tseitin → AC0Frege
- Res(L\(\&\)P) with unary coefficients stronger than
k-DNF Resolution
- Source: uRes(L&P) → uRes(LP) → Res-k
- Source: uRes(L&P) → uRes(LP) → tseitin → AC0Frege → Res-k
- Res(L\(\&\)P) with unary coefficients simulated by
\(\mathrm{TC}^0\)-Frege
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients [missing?]
\(\mathrm{AC}^0\)-Frege with mod 2 axioms
- Res(L\(\&\)P) with unary coefficients [missing?]
\(\mathrm{AC}^0\)-Frege with mod 2 gates
- Res(L\(\&\)P) with unary coefficients [missing?]
OBDD(join,weakening)
- Res(L\(\&\)P) with unary coefficients simulated by
LK
- Source: LK → Frege → TC0Frege → Res(CP) → Res(LP) → uRes(LP) → uRes(L&P)
- Res(L\(\&\)P) with unary coefficients simulated by
Zermelo-Fraenkl Set Theory with the Axiom of Choice
- Source: ZFC → Res(CP) → Res(LP) → uRes(LP) → uRes(L&P)
Formulas
This database is still incomplete; missing data may indicate either the information was not yet recorded or an open problem. Users are encouraged to contribute missing proof systems and/or relations at https://gitlab.com/proofcomplexityzoo/zoo.
Licensed under CC BY 4.0
