Home
All about Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree
Definition from:
Complexity of semialgebraic proofs
Notes: unbounded degree, dynamic, with squares
Proof Systems
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Resolution
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res
- Source: LSn+ → LSd+ → CliqueColouring → Res
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Truth table
- Source: LSn+ → LSd+ → LS+ → LS → tlLS → tlRes → ttp
- Source: LSn+ → LSd+ → CliqueColouring → Res → regRes → tlRes → ttp
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Tree-like resolution
- Source: LSn+ → LSd+ → LS+ → LS → tlLS → tlRes
- Source: LSn+ → LSd+ → CliqueColouring → Res → regRes → tlRes
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Regular resolution
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → regRes
- Source: LSn+ → LSd+ → CliqueColouring → Res → regRes
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Ordered resolution
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → regRes → ordRes
- Source: LSn+ → LSd+ → CliqueColouring → Res → regRes → ordRes
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Pool resolution
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → poolRes
- Source: LSn+ → LSd+ → CliqueColouring → Res → poolRes
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Linear resolution
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → linRes
- Source: LSn+ → LSd+ → CliqueColouring → Res → linRes
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Reversible resolution
- Source: LSn+ → PSC → PS → SoS → SA → uSA → revRes
- Source: LSn+ → LSd+ → CliqueColouring → Res → revRes
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree not simulated by
Cutting Planes
- Source: LSn+ → LSd+ → CliqueColouring → CP
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree not simulated by
Tree-like Cutting Planes
- Source: LSn+ → LSd+ → CliqueColouring → CP → tlCP
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree not simulated by
Cutting Planes with Unary Coefficients
- Source: LSn+ → LSd+ → CliqueColouring → CP → uCP
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree not simulated by
Semantic Cutting Planes
- Source: LSn+ → LSd+ → CliqueColouring → semanticCP
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Cutting Planes with Saturation
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → saturationCP
- Source: LSn+ → LSd+ → CliqueColouring → Res → saturationCP
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree not simulated by
Stabbing Planes
- Source: LSn+ → LSd+ → CliqueColouring → SP
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree not simulated by
Stabbing Planes with Unary Coefficients
- Source: LSn+ → LSd+ → CliqueColouring → SP → uSP
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Res(CP)
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Res(LP)
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Res(CP) with unary coefficients
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Res(LP) with unary coefficients
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Res(L\(\&\)P)
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Res(L\(\&\)P) with unary coefficients
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Semantic degree-k threshold system, treelike version
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree not simulated by
Polynomial Calculus over \(\mathbb{F}_2\)
- Source: LSn+ → sLSn+ → sLS+ → PHP → PC_F2
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree not simulated by
Nullstellensatz over \(\mathbb{F}_2\)
- Source: LSn+ → sLSn+ → sLS+ → PHP → PC_F2 → NS_F2
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
unary ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
ResLin over \(\mathbb{F}_2\), Res(\(\oplus\))
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree not simulated by
Tree-like ResLin over \(\mathbb{F}_2\), treelike Res(\(\oplus\))
- Source: LSn+ → sLSn+ → sLS+ → PHP → tlResLin_F2
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Polynomial Calculus over \(\mathbb{Q}\)
- Source: LSn+ → PSC → PS → SoS → PC_Q
- Source: LSn+ → LSd+ → tseitin → PC_Q
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Nullstellensatz over \(\mathbb{Q}\)
- Source: LSn+ → PSC → PS → SoS → SA → NS_Q
- Source: LSn+ → LSd+ → tseitin → PC_Q → NS_Q
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Hitting
- Source: LSn+ → LSd+ → LS+ → LS → tlLS → tlRes → hit
- Source: LSn+ → LSd+ → CliqueColouring → Res → regRes → tlRes → hit
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Lift and Project
- Source: LSn+ → LSd+ → LS+ → LS → L&P
- Source: LSn+ → LSd+ → CliqueColouring → L&P
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Lift and Project with unary coefficients
- Source: LSn+ → LSd+ → LS+ → LS → L&P → uL&P
- Source: LSn+ → LSd+ → CliqueColouring → L&P → uL&P
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree simulates
Positivstellensatz Calculus
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree simulates
Positivstellensatz
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree simulates
Lovász--Schrijver (LS)
- Source: LSn+ → LSd+ → LS+ → LS
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree simulates
Lovász--Schrijver with squares (LS\(_+\))
- Source: LSn+ → LSd+ → LS+
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree simulates
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree simulated by
Cone Proof System
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
tl Lovász--Schrijver (LS)
- Source: LSn+ → LSd+ → LS+ → LS → tlLS
- Source: LSn+ → LSd+ → tseitin → sLS+ → tlLS+ → tlLS
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Lovász--Schrijver with squares (LS\(_+\))
- Source: LSn+ → LSd+ → LS+ → tlLS+
- Source: LSn+ → LSd+ → tseitin → sLS+ → tlLS+
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree simulates
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree, treelike
- Source: LSn+ → LSd+ → tlLSd+
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
static Lovász--Schrijver (static LS)
- Source: LSn+ → sLSn+ → sLS+ → sLS
- Source: LSn+ → LSd+ → tseitin → sLS+ → sLS
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
static Lovász--Schrijver, with squares of linear functions (static LS\(_+\))
- Source: LSn+ → sLSn+ → sLS+
- Source: LSn+ → LSd+ → tseitin → sLS+
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\))
- Source: [subsystem]
- Source: LSn+ → LSd+ → tseitin → SoS → sLSn+
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Sum of Squares (Lasserre)
- Source: LSn+ → PSC → PS → SoS
- Source: LSn+ → LSd+ → tseitin → SoS
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Sherali--Adams
- Source: LSn+ → PSC → PS → SoS → SA
- Source: LSn+ → LSd+ → tseitin → SoS → SA
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Circular resolution
- Source: LSn+ → PSC → PS → SoS → SA → circRes
- Source: LSn+ → LSd+ → tseitin → SoS → SA → circRes
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree stronger than
Unary Sherali--Adams
- Source: LSn+ → PSC → PS → SoS → SA → uSA
- Source: LSn+ → LSd+ → tseitin → SoS → SA → uSA
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Ideal Proof System
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Extended Frege
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Extended resolution
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Frege
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree not simulated by
\(\mathrm{AC}^0\)-Frege
- Source: LSn+ → LSd+ → tseitin → AC0Frege
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree not simulated by
k-DNF Resolution
- Source: LSn+ → LSd+ → tseitin → AC0Frege → Res-k
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
\(\mathrm{TC}^0\)-Frege
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
\(\mathrm{AC}^0\)-Frege with mod 2 axioms
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
\(\mathrm{AC}^0\)-Frege with mod 2 gates
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
OBDD(join,weakening)
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
LK
- Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree [missing?]
Zermelo-Fraenkl Set Theory with the Axiom of Choice
Formulas
- The size complexity of
Pigeonhole principle
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → sLSn+ → sLS+ → PHP
- The size complexity of
Pigeonhole principle with functionality axioms
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → sLSn+ → sLS+ → PHP → fPHP
- The size complexity of
Pigeonhole principle with functionality and onto axioms
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → sLSn+ → sLS+ → PHP → fPHP → ofPHP
- The size complexity of
Weak pigeonhole principle (2n pigeons, n holes)
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → sLSn+ → sLS+ → PHP → PHP2nn
- The size complexity of
Weak pigeonhole principle (\(n^2\) pigeons, n holes)
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → sLSn+ → sLS+ → PHP → PHP2nn → PHPn2n
- The size complexity of
Bitwise pigeonhole principle
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is [missing?]
- The size complexity of
Relativized pigeonhole principle (n,\(n^2\),n-1)
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is [missing?]
- The size complexity of
Ordering principle
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → regRes → ordering
- The size complexity of
Guarded ordering principle
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → poolRes → ordering+guard
- The size complexity of
Tseitin over \(\mathbb{F}_2\)
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → LSd+ → tseitin
- The size complexity of
Tseitin over \(\mathbb{F}_2\) with k-ary AND gadget
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is [missing?]
- The size complexity of
Tseitin over \(\mathbb{Q}\)
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → PSC → PS → SoS → SA → NS_Q → tseitinQ
- The size complexity of
Flow
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is [missing?]
- The size complexity of
Tseitin \(\mathbb{F}_2\) \(\circ\) IND
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is [missing?]
- The size complexity of
Tseitin \(\mathbb{Q}\) \(\circ\) IND
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is at most quasipolynomial
- Source: LSn+ → PSC → PS → SoS → SA → NS_Q → tsQ+ind
- The size complexity of
Random CNF
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is [missing?]
- The size complexity of
Clique-Colouring
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → LSd+ → CliqueColouring
- The size complexity of
Clique-Colouring encoded as equalities
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is [missing?]
- The size complexity of
Weak Clique-Colouring (2m clique, m colours)
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → LSd+ → CliqueColouring → CliqueColouring2mm
- The size complexity of
Weak Clique-Colouring (m^1/2 clique, log^2 m colours)
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → LSd+ → CliqueColouring → CliqueColouringmlogm
- The size complexity of
Clique-Colouring composed with a permutation
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is [missing?]
- The size complexity of
Pebbling \(\circ\) IND
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → regRes → ordRes → peb+ind
- The size complexity of
Pebbling \(\circ\) XOR, then guarded
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → poolRes → peb+xor+guard
- The size complexity of
Stone formula
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → poolRes → stone
- The size complexity of
String of pearls
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → regRes → pearl
- The size complexity of
Sink of DAG \(\circ\) XOR
in Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree is polynomial
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → sod+xor
This database is still incomplete; missing data may indicate either the information was not yet recorded or an open problem. Users are encouraged to contribute missing proof systems and/or relations at https://gitlab.com/proofcomplexityzoo/zoo.
Licensed under CC BY 4.0
