Home
All about Tseitin over \(\mathbb{F}_2\)
Proof Systems
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Resolution
is exponential
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Truth table
is exponential
- Source: tseitin → Res → regRes → tlRes → ttp
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Tree-like resolution
is exponential
- Source: tseitin → Res → regRes → tlRes
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Regular resolution
is exponential
- Source: tseitin → Res → regRes
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Ordered resolution
is exponential
- Source: tseitin → Res → regRes → ordRes
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Pool resolution
is exponential
- Source: tseitin → Res → poolRes
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Linear resolution
is exponential
- Source: tseitin → Res → linRes
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Reversible resolution
is exponential
- Source: tseitin → Res → revRes
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Cutting Planes
is at most quasipolynomial
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Tree-like Cutting Planes
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Cutting Planes with Unary Coefficients
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Semantic Cutting Planes
is at most quasipolynomial
- Source: semanticCP → CP → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Cutting Planes with Saturation
is exponential
- Source: tseitin → Res → saturationCP
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Stabbing Planes
is at most quasipolynomial
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Stabbing Planes with Unary Coefficients
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Res(CP)
is polynomial
- Source: Res(CP) → Res(LP) → uRes(LP) → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Res(LP)
is polynomial
- Source: Res(LP) → uRes(LP) → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Res(CP) with unary coefficients
is polynomial
- Source: uRes(CP) → uRes(LP) → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Res(LP) with unary coefficients
is polynomial
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Res(L\(\&\)P)
is polynomial
- Source: Res(L&P) → Res(LP) → uRes(LP) → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Res(L\(\&\)P) with unary coefficients
is polynomial
- Source: uRes(L&P) → uRes(LP) → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Semantic degree-k threshold system, treelike version
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Polynomial Calculus over \(\mathbb{F}_2\)
is polynomial
- Source: PC_F2 → NS_F2 → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Nullstellensatz over \(\mathbb{F}_2\)
is polynomial
- Source: [citation needed]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
is polynomial
- Source: ResLin_Z → uResLin_Z → ResLin_F2 → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
unary ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
is polynomial
- Source: uResLin_Z → ResLin_F2 → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
ResLin over \(\mathbb{F}_2\), Res(\(\oplus\))
is polynomial
- Source: [citation needed]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Tree-like ResLin over \(\mathbb{F}_2\), treelike Res(\(\oplus\))
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Polynomial Calculus over \(\mathbb{Q}\)
is exponential
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Nullstellensatz over \(\mathbb{Q}\)
is exponential
- Source: tseitin → PC_Q → NS_Q
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Hitting
is exponential
- Source: tseitin → Res → regRes → tlRes → hit
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Lift and Project
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Lift and Project with unary coefficients
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Positivstellensatz Calculus
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Positivstellensatz
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Lovász--Schrijver (LS)
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Lovász--Schrijver with squares (LS\(_+\))
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree
is polynomial
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree
is polynomial
- Source: LSn+ → LSd+ → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Cone Proof System
is polynomial
- Source: CPS → LSn+ → LSd+ → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
tl Lovász--Schrijver (LS)
is exponential
- Source: tseitin → sLS+ → tlLS+ → tlLS
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Lovász--Schrijver with squares (LS\(_+\))
is exponential
- Source: tseitin → sLS+ → tlLS+
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree, treelike
is [missing?]
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
static Lovász--Schrijver (static LS)
is exponential
- Source: tseitin → sLS+ → sLS
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
static Lovász--Schrijver, with squares of linear functions (static LS\(_+\))
is exponential
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\))
is exponential
- Source: tseitin → SoS → sLSn+
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Sum of Squares (Lasserre)
is exponential
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Sherali--Adams
is exponential
- Source: tseitin → SoS → SA
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Circular resolution
is exponential
- Source: tseitin → SoS → SA → circRes
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Unary Sherali--Adams
is exponential
- Source: tseitin → SoS → SA → uSA
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Ideal Proof System
is polynomial
- Source: IPS → extFrege → Frege → AC0(+)Frege → ResLin_F2 → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Extended Frege
is polynomial
- Source: extFrege → Frege → AC0(+)Frege → ResLin_F2 → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Extended resolution
is polynomial
- Source: extRes → extFrege → Frege → AC0(+)Frege → ResLin_F2 → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Frege
is polynomial
- Source: Frege → AC0(+)Frege → ResLin_F2 → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
\(\mathrm{AC}^0\)-Frege
is exponential
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
k-DNF Resolution
is exponential
- Source: tseitin → AC0Frege → Res-k
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
\(\mathrm{TC}^0\)-Frege
is polynomial
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
\(\mathrm{AC}^0\)-Frege with mod 2 axioms
is polynomial
- Source: AC0Frege+Mod2axioms → NS_F2 → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
\(\mathrm{AC}^0\)-Frege with mod 2 gates
is polynomial
- Source: AC0(+)Frege → ResLin_F2 → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
OBDD(join,weakening)
is polynomial
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
LK
is polynomial
- Source: LK → Frege → AC0(+)Frege → ResLin_F2 → tseitin
- The size complexity of Tseitin over \(\mathbb{F}_2\) in
Zermelo-Fraenkl Set Theory with the Axiom of Choice
is polynomial
- Source: ZFC → Res(CP) → Res(LP) → uRes(LP) → tseitin
This database is still incomplete; missing data may indicate either the information was not yet recorded or an open problem. Users are encouraged to contribute missing proof systems and/or relations at https://gitlab.com/proofcomplexityzoo/zoo.
Licensed under CC BY 4.0
