Home
All about Sum of Squares (Lasserre)
Proof Systems
- Sum of Squares (Lasserre) stronger than
Resolution
- Source: SoS → PC_Q → Res
- Source: SoS → sLSn+ → CliqueColouring → Res
- Sum of Squares (Lasserre) stronger than
Truth table
- Source: SoS → SA → NS_Q → tlRes → ttp
- Source: SoS → SA → PHP → tlResLin_F2 → tlRes → ttp
- Sum of Squares (Lasserre) stronger than
Tree-like resolution
- Source: SoS → SA → NS_Q → tlRes
- Source: SoS → SA → PHP → tlResLin_F2 → tlRes
- Sum of Squares (Lasserre) stronger than
Regular resolution
- Source: SoS → PC_Q → Res → regRes
- Source: SoS → sLSn+ → CliqueColouring → Res → regRes
- Sum of Squares (Lasserre) stronger than
Ordered resolution
- Source: SoS → PC_Q → Res → regRes → ordRes
- Source: SoS → sLSn+ → CliqueColouring → Res → regRes → ordRes
- Sum of Squares (Lasserre) stronger than
Pool resolution
- Source: SoS → PC_Q → Res → poolRes
- Source: SoS → sLSn+ → CliqueColouring → Res → poolRes
- Sum of Squares (Lasserre) stronger than
Linear resolution
- Source: SoS → PC_Q → Res → linRes
- Source: SoS → sLSn+ → CliqueColouring → Res → linRes
- Sum of Squares (Lasserre) stronger than
Reversible resolution
- Source: SoS → SA → uSA → revRes
- Source: SoS → sLSn+ → CliqueColouring → Res → revRes
- Sum of Squares (Lasserre) incomparable wrt
Cutting Planes
- Source: SoS → sLSn+ → CliqueColouring → CP
- Source: CP → tseitin → SoS
- Sum of Squares (Lasserre) not simulated by
Tree-like Cutting Planes
- Source: SoS → sLSn+ → CliqueColouring → CP → tlCP
- Sum of Squares (Lasserre) not simulated by
Cutting Planes with Unary Coefficients
- Source: SoS → sLSn+ → CliqueColouring → CP → uCP
- Sum of Squares (Lasserre) incomparable wrt
Semantic Cutting Planes
- Source: SoS → sLSn+ → CliqueColouring → semanticCP
- Source: semanticCP → CP → tseitin → SoS
- Sum of Squares (Lasserre) stronger than
Cutting Planes with Saturation
- Source: SoS → PC_Q → Res → saturationCP
- Source: SoS → sLSn+ → CliqueColouring → Res → saturationCP
- Sum of Squares (Lasserre) incomparable wrt
Stabbing Planes
- Source: SoS → sLSn+ → CliqueColouring → SP
- Source: SP → tseitin → SoS
- Sum of Squares (Lasserre) not simulated by
Stabbing Planes with Unary Coefficients
- Source: SoS → sLSn+ → CliqueColouring → SP → uSP
- Sum of Squares (Lasserre) does not simulate
Res(CP)
- Source: Res(CP) → Res(LP) → uRes(LP) → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
Res(LP)
- Source: Res(LP) → uRes(LP) → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
Res(CP) with unary coefficients
- Source: uRes(CP) → uRes(LP) → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
Res(LP) with unary coefficients
- Source: uRes(LP) → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
Res(L\(\&\)P)
- Source: Res(L&P) → Res(LP) → uRes(LP) → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
Res(L\(\&\)P) with unary coefficients
- Source: uRes(L&P) → uRes(LP) → tseitin → SoS
- Sum of Squares (Lasserre) [missing?]
Semantic degree-k threshold system, treelike version
- Sum of Squares (Lasserre) incomparable wrt
Polynomial Calculus over \(\mathbb{F}_2\)
- Source: SoS → SA → PHP → PC_F2
- Source: PC_F2 → NS_F2 → tseitin → SoS
- Sum of Squares (Lasserre) incomparable wrt
Nullstellensatz over \(\mathbb{F}_2\)
- Source: SoS → SA → PHP → PC_F2 → NS_F2
- Source: NS_F2 → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Source: ResLin_Z → uResLin_Z → ResLin_F2 → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
unary ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Source: uResLin_Z → ResLin_F2 → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
ResLin over \(\mathbb{F}_2\), Res(\(\oplus\))
- Source: ResLin_F2 → tseitin → SoS
- Sum of Squares (Lasserre) not simulated by
Tree-like ResLin over \(\mathbb{F}_2\), treelike Res(\(\oplus\))
- Source: SoS → SA → PHP → tlResLin_F2
- Sum of Squares (Lasserre) stronger than
Polynomial Calculus over \(\mathbb{Q}\)
- Sum of Squares (Lasserre) stronger than
Nullstellensatz over \(\mathbb{Q}\)
- Source: SoS → SA → NS_Q
- Source: SoS → SA → PHP → PC_Q → NS_Q
- Sum of Squares (Lasserre) stronger than
Hitting
- Source: SoS → SA → NS_Q → tlRes → hit
- Source: SoS → SA → PHP → tlResLin_F2 → tlRes → hit
- Sum of Squares (Lasserre) not simulated by
Lift and Project
- Source: SoS → sLSn+ → CliqueColouring → L&P
- Sum of Squares (Lasserre) not simulated by
Lift and Project with unary coefficients
- Source: SoS → sLSn+ → CliqueColouring → L&P → uL&P
- Sum of Squares (Lasserre) simulated by
Positivstellensatz Calculus
- Sum of Squares (Lasserre) simulated by
Positivstellensatz
- Sum of Squares (Lasserre) [missing?]
Lovász--Schrijver (LS)
- Sum of Squares (Lasserre) [missing?]
Lovász--Schrijver with squares (LS\(_+\))
- Sum of Squares (Lasserre) does not simulate
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree
- Source: LSd+ → tseitin → SoS
- Sum of Squares (Lasserre) weaker than
Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree
- Source: LSn+ → PSC → PS → SoS
- Source: LSn+ → LSd+ → tseitin → SoS
- Sum of Squares (Lasserre) weaker than
Cone Proof System
- Source: CPS → LSn+ → PSC → PS → SoS
- Source: CPS → LSn+ → LSd+ → tseitin → SoS
- Sum of Squares (Lasserre) simulates
tl Lovász--Schrijver (LS)
- Source: SoS → sLSn+ → sLS+ → tlLS+ → tlLS
- Sum of Squares (Lasserre) simulates
Lovász--Schrijver with squares (LS\(_+\))
- Source: SoS → sLSn+ → sLS+ → tlLS+
- Sum of Squares (Lasserre) [missing?]
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree, treelike
- Sum of Squares (Lasserre) simulates
static Lovász--Schrijver (static LS)
- Source: SoS → sLSn+ → sLS+ → sLS
- Sum of Squares (Lasserre) simulates
static Lovász--Schrijver, with squares of linear functions (static LS\(_+\))
- Source: SoS → sLSn+ → sLS+
- Sum of Squares (Lasserre) simulates
static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\))
- Sum of Squares (Lasserre) simulates
Sherali--Adams
- Source: [citation needed]
- Sum of Squares (Lasserre) simulates
Circular resolution
- Source: SoS → SA → circRes
- Sum of Squares (Lasserre) stronger than
Unary Sherali--Adams
- Source: SoS → SA → uSA
- Source: SoS → PC_Q → Res → sod+xor → uSA
- Sum of Squares (Lasserre) does not simulate
Ideal Proof System
- Source: IPS → extFrege → Frege → AC0(+)Frege → ResLin_F2 → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
Extended Frege
- Source: extFrege → Frege → AC0(+)Frege → ResLin_F2 → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
Extended resolution
- Source: extRes → extFrege → Frege → AC0(+)Frege → ResLin_F2 → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
Frege
- Source: Frege → AC0(+)Frege → ResLin_F2 → tseitin → SoS
- Sum of Squares (Lasserre) not simulated by
\(\mathrm{AC}^0\)-Frege
- Source: SoS → SA → NS_Q → ofPHP → AC0Frege
- Sum of Squares (Lasserre) not simulated by
k-DNF Resolution
- Source: SoS → SA → NS_Q → ofPHP → AC0Frege → Res-k
- Sum of Squares (Lasserre) does not simulate
\(\mathrm{TC}^0\)-Frege
- Source: TC0Frege → Res(CP) → Res(LP) → uRes(LP) → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
\(\mathrm{AC}^0\)-Frege with mod 2 axioms
- Source: AC0Frege+Mod2axioms → NS_F2 → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
\(\mathrm{AC}^0\)-Frege with mod 2 gates
- Source: AC0(+)Frege → ResLin_F2 → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
OBDD(join,weakening)
- Source: OBDDjoinweak → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
LK
- Source: LK → Frege → AC0(+)Frege → ResLin_F2 → tseitin → SoS
- Sum of Squares (Lasserre) does not simulate
Zermelo-Fraenkl Set Theory with the Axiom of Choice
- Source: ZFC → Res(CP) → Res(LP) → uRes(LP) → tseitin → SoS
Formulas
This database is still incomplete; missing data may indicate either the information was not yet recorded or an open problem. Users are encouraged to contribute missing proof systems and/or relations at https://gitlab.com/proofcomplexityzoo/zoo.
Licensed under CC BY 4.0
