Home
All about Cutting Planes with Saturation
Proof Systems
- Cutting Planes with Saturation equivalent
Resolution
- Source: [citation needed]
- Cutting Planes with Saturation stronger than
Truth table
- Source: saturationCP → Res → regRes → tlRes → ttp
- Source: saturationCP → Res → regRes → ordering → tlRes → ttp
- Cutting Planes with Saturation stronger than
Tree-like resolution
- Source: saturationCP → Res → regRes → tlRes
- Source: saturationCP → Res → regRes → ordering → tlRes
- Cutting Planes with Saturation stronger than
Regular resolution
- Source: saturationCP → Res → regRes
- Source: saturationCP → Res → poolRes → stone → regRes
- Cutting Planes with Saturation stronger than
Ordered resolution
- Source: saturationCP → Res → regRes → ordRes
- Source: saturationCP → Res → regRes → pearl → ordRes
- Cutting Planes with Saturation simulates
Pool resolution
- Source: saturationCP → Res → poolRes
- Cutting Planes with Saturation simulates
Linear resolution
- Source: saturationCP → Res → linRes
- Cutting Planes with Saturation stronger than
Reversible resolution
- Source: saturationCP → Res → revRes
- Source: saturationCP → Res → sod+xor → uSA → revRes
- Cutting Planes with Saturation weaker than
Cutting Planes
- Source: CP → uCP → Res → saturationCP
- Source: CP → uCP → PHP → PC_Q → Res → saturationCP
- Cutting Planes with Saturation not simulated by
Tree-like Cutting Planes
- Source: saturationCP → Res → regRes → ordRes → peb+ind → tlCP
- Cutting Planes with Saturation weaker than
Cutting Planes with Unary Coefficients
- Source: uCP → Res → saturationCP
- Source: uCP → PHP → PC_F2 → Res → saturationCP
- Cutting Planes with Saturation weaker than
Semantic Cutting Planes
- Source: [subsystem]
- Source: semanticCP → CP → uCP → PHP → PC_Q → Res → saturationCP
- Cutting Planes with Saturation weaker than
Stabbing Planes
- Source: SP → uSP → uCP → Res → saturationCP
- Source: SP → uSP → uCP → PHP → PC_F2 → Res → saturationCP
- Cutting Planes with Saturation weaker than
Stabbing Planes with Unary Coefficients
- Source: uSP → uCP → Res → saturationCP
- Source: uSP → uCP → PHP → PC_F2 → Res → saturationCP
- Cutting Planes with Saturation weaker than
Res(CP)
- Source: Res(CP) → CP → uCP → Res → saturationCP
- Source: Res(CP) → CP → uCP → PHP → PC_Q → Res → saturationCP
- Cutting Planes with Saturation weaker than
Res(LP)
- Source: Res(LP) → uRes(LP) → Res → saturationCP
- Source: Res(LP) → uRes(LP) → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
Res(CP) with unary coefficients
- Source: uRes(CP) → uCP → Res → saturationCP
- Source: uRes(CP) → uRes(LP) → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
Res(LP) with unary coefficients
- Source: uRes(LP) → Res → saturationCP
- Source: uRes(LP) → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
Res(L\(\&\)P)
- Source: Res(L&P) → Res(LP) → uRes(LP) → Res → saturationCP
- Source: Res(L&P) → Res(LP) → uRes(LP) → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
Res(L\(\&\)P) with unary coefficients
- Source: uRes(L&P) → uRes(LP) → Res → saturationCP
- Source: uRes(L&P) → uRes(LP) → tseitin → Res → saturationCP
- Cutting Planes with Saturation [missing?]
Semantic degree-k threshold system, treelike version
- Cutting Planes with Saturation weaker than
Polynomial Calculus over \(\mathbb{F}_2\)
- Source: PC_F2 → Res → saturationCP
- Source: PC_F2 → NS_F2 → tseitin → Res → saturationCP
- Cutting Planes with Saturation incomparable wrt
Nullstellensatz over \(\mathbb{F}_2\)
- Source: saturationCP → Res → regRes → ordRes → peb+ind → NS_F2
- Source: NS_F2 → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Source: ResLin_Z → uResLin_Z → ResLin_F2 → Res → saturationCP
- Source: ResLin_Z → uResLin_Z → ResLin_F2 → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
unary ResLin over \(\mathbb{Q}\), ResLin, Resolution over linear equations over rationals
- Source: uResLin_Z → ResLin_F2 → Res → saturationCP
- Source: uResLin_Z → ResLin_F2 → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
ResLin over \(\mathbb{F}_2\), Res(\(\oplus\))
- Source: ResLin_F2 → Res → saturationCP
- Source: ResLin_F2 → tseitin → Res → saturationCP
- Cutting Planes with Saturation [missing?]
Tree-like ResLin over \(\mathbb{F}_2\), treelike Res(\(\oplus\))
- Cutting Planes with Saturation weaker than
Polynomial Calculus over \(\mathbb{Q}\)
- Source: PC_Q → Res → saturationCP
- Source: PC_Q → NS_Q → ofPHP → Res → saturationCP
- Cutting Planes with Saturation incomparable wrt
Nullstellensatz over \(\mathbb{Q}\)
- Source: saturationCP → Res → regRes → ordRes → peb+ind → NS_Q
- Source: NS_Q → ofPHP → Res → saturationCP
- Cutting Planes with Saturation stronger than
Hitting
- Source: saturationCP → Res → regRes → tlRes → hit
- Source: saturationCP → Res → regRes → ordering → tlRes → hit
- Cutting Planes with Saturation simulated by
Lift and Project
- Source: L&P → uL&P → Res → saturationCP
- Cutting Planes with Saturation simulated by
Lift and Project with unary coefficients
- Source: uL&P → Res → saturationCP
- Cutting Planes with Saturation weaker than
Positivstellensatz Calculus
- Source: PSC → PS → SoS → PC_Q → Res → saturationCP
- Source: PSC → PS → SoS → sLSn+ → CliqueColouring → Res → saturationCP
- Cutting Planes with Saturation weaker than
Positivstellensatz
- Source: PS → SoS → PC_Q → Res → saturationCP
- Source: PS → SoS → sLSn+ → CliqueColouring → Res → saturationCP
- Cutting Planes with Saturation weaker than
Lovász--Schrijver (LS)
- Source: LS → L&P → uL&P → Res → saturationCP
- Source: LS → PHP → PC_F2 → Res → saturationCP
- Cutting Planes with Saturation weaker than
Lovász--Schrijver with squares (LS\(_+\))
- Source: LS+ → LS → L&P → uL&P → Res → saturationCP
- Source: LS+ → LS → PHP → PC_F2 → Res → saturationCP
- Cutting Planes with Saturation weaker than
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree
- Source: LSd+ → LS+ → LS → L&P → uL&P → Res → saturationCP
- Source: LSd+ → CliqueColouring → Res → saturationCP
- Cutting Planes with Saturation weaker than
Lovász--Schrijver with squares (LS\(_+^\infty\)), unbounded degree
- Source: LSn+ → PSC → PS → SoS → PC_Q → Res → saturationCP
- Source: LSn+ → LSd+ → CliqueColouring → Res → saturationCP
- Cutting Planes with Saturation weaker than
Cone Proof System
- Source: CPS → IPS → extFrege → extRes → Res → saturationCP
- Source: CPS → LSn+ → LSd+ → CliqueColouring → Res → saturationCP
- Cutting Planes with Saturation [missing?]
tl Lovász--Schrijver (LS)
- Cutting Planes with Saturation [missing?]
Lovász--Schrijver with squares (LS\(_+\))
- Cutting Planes with Saturation [missing?]
Lovász--Schrijver with squares (LS\(_+^d\)), bounded degree, treelike
- Cutting Planes with Saturation [missing?]
static Lovász--Schrijver (static LS)
- Cutting Planes with Saturation does not simulate
static Lovász--Schrijver, with squares of linear functions (static LS\(_+\))
- Source: sLS+ → PHP → PC_F2 → Res → saturationCP
- Cutting Planes with Saturation does not simulate
static Lovász--Schrijver, with squares of linear functions (static LS\(_+^n\))
- Source: sLSn+ → CliqueColouring → Res → saturationCP
- Cutting Planes with Saturation weaker than
Sum of Squares (Lasserre)
- Source: SoS → PC_Q → Res → saturationCP
- Source: SoS → sLSn+ → CliqueColouring → Res → saturationCP
- Cutting Planes with Saturation weaker than
Sherali--Adams
- Source: SA → circRes → Res → saturationCP
- Source: SA → NS_Q → ofPHP → Res → saturationCP
- Cutting Planes with Saturation weaker than
Circular resolution
- Source: circRes → Res → saturationCP
- Source: circRes → SA → NS_Q → ofPHP → Res → saturationCP
- Cutting Planes with Saturation not simulated by
Unary Sherali--Adams
- Source: saturationCP → Res → sod+xor → uSA
- Cutting Planes with Saturation weaker than
Ideal Proof System
- Source: IPS → extFrege → extRes → Res → saturationCP
- Source: IPS → extFrege → PHP → PC_F2 → Res → saturationCP
- Cutting Planes with Saturation weaker than
Extended Frege
- Source: extFrege → extRes → Res → saturationCP
- Source: extFrege → PHP → PC_F2 → Res → saturationCP
- Cutting Planes with Saturation weaker than
Extended resolution
- Source: extRes → Res → saturationCP
- Source: extRes → extFrege → PHP → PC_F2 → Res → saturationCP
- Cutting Planes with Saturation weaker than
Frege
- Source: Frege → AC0Frege → Res-k → Res → saturationCP
- Source: Frege → AC0(+)Frege → ResLin_F2 → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
\(\mathrm{AC}^0\)-Frege
- Source: AC0Frege → Res-k → Res → saturationCP
- Source: AC0Frege → CliqueColouring2mm → CP → uCP → Res → saturationCP
- Cutting Planes with Saturation weaker than
k-DNF Resolution
- Source: Res-k → Res → saturationCP
- Source: Res-k → CliqueColouringmlogm → CP → uCP → Res → saturationCP
- Cutting Planes with Saturation weaker than
\(\mathrm{TC}^0\)-Frege
- Source: TC0Frege → AC0Frege → Res-k → Res → saturationCP
- Source: TC0Frege → PHP → PC_F2 → Res → saturationCP
- Cutting Planes with Saturation weaker than
\(\mathrm{AC}^0\)-Frege with mod 2 axioms
- Source: AC0Frege+Mod2axioms → AC0Frege → Res-k → Res → saturationCP
- Source: AC0Frege+Mod2axioms → NS_F2 → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
\(\mathrm{AC}^0\)-Frege with mod 2 gates
- Source: AC0(+)Frege → ResLin_F2 → Res → saturationCP
- Source: AC0(+)Frege → ResLin_F2 → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
OBDD(join,weakening)
- Source: OBDDjoinweak → uCP → Res → saturationCP
- Source: OBDDjoinweak → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
LK
- Source: LK → Frege → AC0Frege → Res-k → Res → saturationCP
- Source: LK → Frege → AC0(+)Frege → ResLin_F2 → tseitin → Res → saturationCP
- Cutting Planes with Saturation weaker than
Zermelo-Fraenkl Set Theory with the Axiom of Choice
- Source: ZFC → extFrege → extRes → Res → saturationCP
- Source: ZFC → extFrege → PHP → PC_F2 → Res → saturationCP
Formulas
This database is still incomplete; missing data may indicate either the information was not yet recorded or an open problem. Users are encouraged to contribute missing proof systems and/or relations at https://gitlab.com/proofcomplexityzoo/zoo.
Licensed under CC BY 4.0
